
COURSE : GCSE COMPUTER SCIENCE

COMPILERS AND INTERPRETERS UNIT : 2.5.1
PROGRAMMING LANGUAGES AND IDES

2.5.1 Compilers and Interpreters.doc 1 of 2

Why do we need compilers and interpreters?
When we write program code, we generally use that are something more-or-less
like English (languages like Python; Java; Visual Basic; the C, C++, C# family…) –
unless we’re serious geeky nerds writing in assembler… So, we need something to
translate our human-oriented code into the binary stuff the processor can – um –
process.

The translators we use to convert our high-level language fall into two categories:
compilers and interpreters.

What’s the difference?

Interpreters
An interpreter translates the code line-by-line, when it is run. When you write
programs in Python, the IDE runs it interpretively – that is to say it translates it a
line at a time, as the machine code (binary) for each line is required. The interpreter
also checks the syntax of your code, and alerts your attention to syntax errors
(sometimes with more meaningful messages, sometimes leaving you to figure where
the error in your code is!)

Compilers
A compiler translates the whole program into machine code to produce what is
known as object code. (Your original program is known as source code.) The
compiler will generate error messages if it finds anything wrong with the source
code. Each time a change is made to the source code, the whole program needs to
be re-compiled before it can be run again.

What’s this IDE thing?
An IDE is an Interactive Development Environment – a tool which allows
programmers to write/edit and test code, often with useful features like being able to
help the programmer “spell check” some of their code before it is run; having
features to highlight different parts of the code in different colours (command words,
or string values specified within the code, for example); and will sometime highlight
where the programmer has made syntax errors, even before the program is run or
tested.

IDEs can have powerful features to enable both quick coding (like auto-fill of
command words, completion of brackets and so on) and debugging.

The tool you use to write Python is an IDLE – or Interactive Development Learning
Environment.

COURSE : GCSE COMPUTER SCIENCE

COMPILERS AND INTERPRETERS UNIT : 2.5.1
PROGRAMMING LANGUAGES AND IDES

2.5.1 Compilers and Interpreters.doc 2 of 2

Compilers and Interpreters Compared
Compiler Interpreter

Translates the whole program into object code. Translates and executes the source code one line at a time.
Any change to the source code requires the entire program to
be recompiled – at development stage, this can be very time-
consuming.

Can quickly re-run any changes made to the source code since
it is translated at run-time and the programmer does not have to
wait for the entire program to be translated before part of it can
be tested.

Compiled object code will run a lot faster than waiting for an
interpreter to translate the program line-by-line every time it is
run.

Running a program interpretively takes longer, as each line of
source code needs to be translated every time it is run.

A compiler produces executable file, so the original source code
does not need to be compiled again (unless it is changed).

The original source code needs to be interpreted (translated)
every time the program is run.

Compiled code keeps the source code hidden meaning that
a software house can sell copies of its finished programs for
clients to use, without giving away any of their programming
secrets.

If a program is to be run interpretively then the user neds to
have all of the source code (and the interpreter) on their
computer. Thus the source code can be available for the user to
read, change (and copy…)

The object code can be run without needing any compiler or
interpreter on the user’s computer.

The user needs both the source code and the interpreter to run
the program.

Advantages Advantages
Finished code runs faster; users cannot see the source code.

For example:
When a games software house sells a product, they want it to
run as fast as possible on their customers’ machines; they also
do not want to let anyone see their programming secrets!

Code can be run line-by-line, so changes can be made and
tested quickly; also, if it’s running line-by-line (and hence rather
more slowly!) it’s easier for a programmer to spot where
something unexpected or unwanted is happening in their code.

